英国青少年科学创造力的发展研究

胡卫平**

林崇德 申继亮

Philip Adey

(山西师范大学课程与教学研究所,山西临汾,041004) (北京师范大学发展心理研究所,北京,100875) (伦敦大学国王学院,英国)

摘 要 对英国 6 所学校 11 岁到 15 岁的 1087 名中学生的科学创造力进行了研究 ,结果表明 :英国青少年科 学创造力及其各成分的发展存在着显著的年龄差异。随着年龄的增大、科学创造力及其各成分呈持续发展趋 势,但在 14 岁时要下降;第二,英国青少年的科学创造力存在明显的性别差异。总的来讲,女生优于男生。但 就科学创造力的各个成分来看,男女生具有不同的特点。

关键词:英国 青少年 科学创造力 发展

问题的提出及研究目的

自从 20 世纪 50 年代以来,人们对创造力进行 了大量的研究,但有关青少年科学创造力发展的研 究很少,且没有从较大年龄范围内研究青少年科学 创造力发展的年龄特征和趋势。有关研究表明,不 同学科的能力之间存在着不平衡性[1],不同领域创 造力之间的相关系数不大[2]。自 20 世纪 80 年代以 来,大部分研究者认为,领域知识和技能是影响创造 力的一个主要因素,没有一定的某一领域的知识和 技能,是不可能在该领域取得创造成果的[3][4][5]。 因此,有必要对青少年科学创造力的发展问题进行 研究。英国是一个高度发达的国家,是近代科学的 发源地。研究英国青少年的科学创造力,不仅可以 使我们更加深入地理解青少年科学创造力发展的规 律.而且能够为我国中学科学教学中培养学生的科 学创造力提供一定的思路。本研究旨在比较系统地 研究英国青少年科学创造力发展的年龄特征和性别 差异,从而为比较中英青少年科学创造力的发展打 下基础。

2 研究方法

2.1 被试

本研究的被试是来自于英格兰不同城镇六所中 学的 1087 名学生,年龄范围在 11 岁到 15 岁之间, 如果学校的学生按成绩分班,每个年级取一个好班, 一个差班:如果学校的学生未按成绩分班,每个年级 取一个或两个混合班。

2.2 研究工具

本研究所使用的工具是我们编制的《青少年科 学创造力测验》[6],该测验共有7个维度,分别考察 青少年科学创造力的 7 个方面,即创造性的物体应 用能力、创造性的问题提出能力、创造性的产品改进 能力、创造性想象能力、创造性的问题解决能力、创 造性的实验设计能力和创造性的技术产品设计能 力。本量表属于纸笔测验,所有问题都是开放性的, 测验时间为 60 分钟。评分按照答案所反映的被试 在解答问题的过程中思维和想象的流畅性、灵活性 和独创性来进行。该测验的 Cronbach 系数为 .893.各个项目的评分者信度在.793 到.913 之间. 重测信度在,748 到,910 之间。对7个项目进行探 索性因素分析,仅获得一个因素。量表具有较高的 表面效度,学生对量表的接受程度较高。

2.3 研究程度

首先,采取团体测验法将《青少年科学创造力测 验》施测于上述的 1087 名中学生。

其次,根据被试完成的认真情况,获得有效试 卷,并依据评分标准进行评分,得到每位被试在各个 项目及总量表上的得分。

最后,将所有被试的成绩输入 SPSS,并利用

^{*} 全国教育科学" 十五 '规划国家重点课题(课题号:ABA010012)和全国教育科学" 十五 '规划教育部规划课题(课题号:FBB011041)的部分 研究成果。

^{**} E - mail:huwp @dns.sxtu.edu.cn

SPSS10.0 for Windows 对数据进行处理。

研究结果 3

3.1 年龄及性别对英国青少年科学创造力的影响

为了探讨年龄及性别对英国青少年科学创造力 影响的主效应及其交互作用,我们对 11 到 15 岁的 五个年龄组被试《青少年科学创造力测验》各项目分 数及总量表分数在年龄和性别(5 x2)等两个因素上 的差异进行了复方差分析(MANOVA)。结果表明: 第一,年龄因素对青少年在《青少年科学创造力测 验》各项目上的得分及总量表上的得分均有显著的 主效应(p < .001):第二,性别因素对青少年在《青 少年科学创造力测验》中创造想象(p < .001)、问题 解决(p < .05)、实验设计(p < .001)、创造活动(p< .01) 及总量表 (p < .001) 上的分数有显著的主效 应,而在其它项目上的分数则没有显著的主效应;第 三,年龄与性别对青少年在《青少年科学创造力测 验》各项目及总量表上的得分均没有显著的交互效 应。

3.2 英国青少年科学创造力发展的年龄特征

由于年龄对英国青少年科学创造力的发展有显 著的影响,我们比较了各个年龄阶段的青少年在科 学创造力测验各项目及总量表上的平均分和标准 差,并采用单因素方差分析(Oneway - ANOVA)考 察了英国青少年在《青少年科学创造力测验》各分测 验及总量表上得分的年龄差异及显著性水平,结果 表明:英国青少年科学创造力及其各成分的发展存 在着显著的年龄差异,随着年龄的增大,科学创造力 及其各成分呈持续发展趋势,但并非直线上升,而是 波浪式前进的。具体来讲,第一,从11岁到13岁, 创造性的物体应用能力、创造性的问题提出能力、创 造性想象能力、创造性的实验设计能力及科学创造 力平稳增长,迅速发展。对于其它几种能力,虽然出 现了下降,但总体上还是上升的。11 到 13 岁是青 少年科学创造力迅速发展的关键时期。第二,在14 岁时,除创造性的问题解决能力之外的所有科学创 造力的成分均有所下降,到15岁时又回升。

虽然尚未见到关于青少年科学创造力发展趋势 的研究,但许多学者采用不同的方法对青少年一般 创造力的发展进行了探讨,其中最有代表性的是美 国心理学家 Torrance 的研究[7]。他在美国明尼苏 达州对小学一年级学生至成人进行了大规模有组织

的创造性思维测验,结果发现:儿童至成人的创造性 思维的发展不是直线的,而是呈犬齿形曲线,总共有 四次突变或停滞的创造力"低潮",依次是5岁、9 岁、13岁和17岁。日本学者潼次武夫的研究也得 出了类似的结果[8]。我们的研究结果与托兰斯的 研究结果基本相同,但对于青少年的科学创造力来 讲,下降发生在14岁,比托兰斯的结果推迟一年,这 可能是因为科学创造力与科学知识密切相关,儿童 在小学阶段所学的科学知识非常有限,从初中开始, 科学课的课时增加、内容加深、范围更广,从而由于 科学知识的增加推迟了科学创造力下降的年龄。

关于儿童青少年创造力发展中的"低潮"现象, 研究者们的意见较不一致[8]。我们认为,产生创造 力发展中的"低潮"现象的原因主要有三个方面,一 方面是在身心发展的过渡阶段,青少年容易受社会 习俗的压力。14岁正好是少年向青年过渡的时期, 他们的逻辑思维能力从经验型向理论型过渡,因此, 很容易受社会压力、学校压力、老师压力及同伴压力 等的影响而产生不安全和不可靠的感觉,进而限制 意识、产生动荡,使得创造性思维更加困难;另一方 面,"锁闭性"是这一阶段青少年显著的心理特 点[9],虽然他们的内心世界非常复杂,但不轻易表 露出来:还有,在教学中,教师不太重视发散思维能 力的培养,虽然随着年龄的增大,逻辑思维在不断发 展,而创造性思维的重要成分——发散思维能力未 必提高。由于这些原因,致使14岁青少年的科学创 造力下降。

3.3 英国青少年科学创造力发展的性别差异

鉴于性别对英国青少年科学创造力的发展有显 著的影响,我们用 t —检验分别考察了青少年在创 造想象、问题解决、实验设计、创造活动等项目和总 量表上得分的性别差异及显著性水平。结果表明: 英国青少年的科学创造力存在明显的性别差异,这 种差异主要发生在 12 到 14 岁之间,总的来讲,女生 优于男生。但就科学创造力的各个成分来看,男女 生具有不同的特点,男生有较强的创造性问题解决 能力,而女生则有较强的创造性想象能力、创造性实 验设计能力和创造性产品设计能力。

造成英国青少年女生的科学创造力比男生强的 主要原因是女生的学习成绩明显高于男生。近几年 来,每年的高考成绩都是女生高:在学校中,更多的 女生被分在好班,而男生却被分在差班,扎实的科学 知识为女生科学创造力的发展打下了良好的基础。由研究结果也可以看出,英国学生科学创造力的男女差异主要发生在 12 岁、13 岁和 14 岁,由于在 11 岁和 15 岁对完成本测验所需要的科学知识的差异不大,导致在《科学创造力测验》上得分的差异也不显著。另外,在西方,性别角色观念不象中国强,女性是比较独立的,这就使得她们思维的灵活性和独创性并不比男性差,参加科学活动的机会也不比男性少,从而保证了她们科学创造力的发展。

4 研究结论

根据研究结果及分析,可以得出如下结论:

- (1)英国青少年科学创造力及其各成分的发展存在着显著的年龄差异,随着年龄的增大,科学创造力及其各成分呈持续发展趋势,但在 14 岁时要下降。
- (2)英国青少年的科学创造力存在明显的性别差异。总的来讲,女生优于男生。但就科学创造力的各个成分来看,男女生具有不同的特点。

5 参考文献

- 林崇德. 学习与发展. 北京:北京师范大学出版社, 1999:207-208
- 2 Sternberg ,R.J. Successful intelligence. New York: Simon & Schuster ,1996
- 3 Amabile, T. M. The social psychology of creativity: A componential conceptualization. Journal of Personality and Social Psychology, 1983, 45:357 375
- 4 Sternberg, R. J. An investment theory of creativity and its development. Human Development, 1991, 34:1 31
- 5 Feldhusen J. F. Creativity: A knowledge base metacognitive skills, and personality factors. The Journal of Creative Behavior, 1995, 29 (4):255 - 267
- 6 Hu ,W. & Adey ,P. A scientific creativity test for secondary school student. International Journal of Science Education , 2002 ,24(4) :384 - 403
- 7 Torrance, E. P. Guilding creative talent. Englewood Cliffs, N.J.: Pretice-Hall, INC., 1962:84 - 103
- 8 董奇.儿童创造力发展心理学.杭州:浙江教育出版社, 1993:94
- 9 林崇德.教育的智慧.北京:开明出版社,1999:92-96

A Developmental Research on The Scientific Creativity of British Adolescents

Hu Weiping¹, Shen Jiliang², Lin Chongde², Philip A dey³
(¹Curriculum and Instruction Institute, Shanxi Teachers University, Linfen, Shanxi, 041004)
(²Institute of Developmental Psychology, Beijing Normal University, Beijing, 100875)
(³King 's College London, UK)

Abstract The scientific creativity of British adolescents was studied. 1098 students between 11 and 15 years old from 6 secondary schools took part in this research. The results were as follows: First, the age differences of British adolescents 'scientific creativity and its components are marked. They have an increasing tendency, but a decrease at the age of fourteen. Second, British females 'scientific creativity is evidently superior to males'. But there are different characteristics between males and females in different components.

Key words: Britain, adolescents, scientific creativity, development